Lecture 09

Design of Wall and Column Footings

By: Prof Dr. Qaisar Ali
Civil Engineering Department
UET Peshawar
drqaisarali@uetpeshawar.edu.pk

Contents

- Introduction
- Types of Foundation
- Wall Footing
 - General
 - ACI Recommendations
 - Design Procedure
 - Examples
Introduction

• The substructure, or foundation, is the part of a structure that is usually placed below the surface of the ground and that transmits the load to the underlying soil or rock.

• Function of a foundation is to transfer the structural loads from a building safely into the ground.

• Foundation is regarded as the most important component of engineered systems.
Types of Foundations

- Foundations can be divided into two broad categories depending on the depth of foundation;

1. Shallow Foundations
 - Load transfer occur at shallower depths.
 - Isolated, Wall, Combined, Mat footings.

2. Deep Foundations
 - Load transfer occur at deeper depths.
 - Piles, drilled piers, drilled caissons

Types of Foundations

- Shallow Foundations
 1. Isolated Column Footing
 - Isolated column footing carrying a single column is usually called spread footing.
Types of Foundations

- Shallow Foundations
 1. Isolated Column Footing
 - Sometimes spread footings are stepped, or are tapered to save materials.

![Spread Footing (Tapered)](image1) ![Spread Footing (Stepped)](image2)

2. Wall Footing (Strip Footing)
 - Wall footings or strip footings display essentially one-dimensional action, cantilevering out on each side of the wall.
Types of Foundations

• Shallow Foundations

3. Combined Footing
 • A combined footing is a type of footing supporting two or more than two columns. There are two common configurations of combined footings:
 1. Two Column Footing
 • Such a footing is often used when one column is close to a property line.

2. Column Strip or Multiple Column Footing
 • A combined footing may also be used if the space between adjoining isolated footings is small.
Types of Foundations

• Shallow Foundations

4. Mat Footing
 • A mat or raft foundation transfers the loads from all the columns in a building to the underlying soil.
 • Mat foundations are used when excessive loads are supported on a limited area or when very weak soils are encountered.
 • Mat footings are essentially inverted slabs and hence they have as much configurations as typical slab systems have.

Types of Foundations

• Shallow Foundations

5. Mat Footing

Mat Footing with Beams

Mat Footing without Beams
Types of Foundations

- **Shallow Foundations**
 5. Mat Footing

![Mat Footing with Drop Panels](image1)
![Mat Footing with Column Capitals](image2)

- **Deep Foundations**
 6. Pile Foundation
 - This type of foundation is essential when the supporting ground consists of structurally unsound layers of materials to large depths.
 - The piles may be either end bearing, skin friction, or both.
Types of Foundations

- **Choice of Foundation**
 - The choice of foundation type is selected in consultation with geotechnical engineer.
 - Factors to be considered are:
 - Soil strength
 - Soil type
 - Variability of soil type over the area and with increasing depth
 - Susceptibility of the soil and the building to deflections.
 - Construction methods

Following types of footing will be discussed in detail in the next slides:

1. Wall Footing
2. Isolated Column Footing
1. Wall Footing

General

- Behavior:
 - A wall footing behaves similarly to a cantilever beam, where the cantilever extends out from the wall and is loaded in an upward direction by the soil pressure.
General

- **Behavior:**
 - The wall footing has bending in only one direction, it is generally designated in much the same manner as a one way slab, by considering a typical 12-in. wide strip along the wall length.
 - The simple principles of beam action apply to wall footings with only minor modifications.

![Deflected shape of footing](image)

- **Reinforcement:**
 - Main reinforcement for flexure is placed at the bottom of the footing perpendicular to the wall along the short direction, as shown.
 - Temperature reinforcement is placed at the bottom of the footing parallel to the wall along the long direction.

![Main reinforcement and plan of wall footing](image)
ACI Recommendations

- **ACI Chapter 13**
 - ACI section 13.3 contains provisions for shallow foundations.

Required Footing Area

- Footing bearing area is calculated based on unfactored forces or service loads (ACI 13.3.1.1)
- **Bearing Area,** $A_{req} = \frac{\text{Service Load}}{q_e}$
 - Where Effective bearing capacity, $q_e = q_a - W$
 - ($W = \text{Weight of fill} + \text{weight of concrete}$)

- **Bearing pressure for strength design of footing,** q_u:
 - $q_u = \frac{\text{Factored load on column}}{A_{req}}$
ACI Recommendations

Design Considerations in Flexure

- The maximum factored moment is calculated at critical section.

- For a footing supporting masonry wall, critical section is located between the edge and the middle of the wall. (ACI 13.2.7.1)
 \[M_u = \frac{q_u (k + b/4)^2}{2} \]

- For a footing supporting concrete wall, critical section is located at the face of the wall. (ACI 13.2.7.1)
 \[M_u = \frac{q_u k^2}{2} \]
ACI Recommendations

• Design Considerations in Flexure
 • Minimum reinforcement Requirement, A_{min} (ACI 7.6.1.1):
 • For less than Grade 60, $A_{\text{min}} = 0.0020 \ bh$
 • For Grade 60, $A_{\text{min}} = 0.0018 \ bh$
 • Maximum spacing requirement
 • Maximum spacing = 3h or 18”
 • Clear cover
 • Minimum 3” clear cover must be provided to protect the bars from corrosion.

ACI Recommendations

• Distribution of Reinforcement
 • ACI 13.3.2.2 states that in one-way footings, reinforcement shall be distributed uniformly across entire width of footing.

ACI Recommendations

• Distribution of Reinforcement
 • ACI 13.3.2.2 states that in one-way footings, reinforcement shall be distributed uniformly across entire width of footing.

ACI Recommendations

• Distribution of Reinforcement
 • ACI 13.3.2.2 states that in one-way footings, reinforcement shall be distributed uniformly across entire width of footing.
ACI Recommendations

• Design Considerations in Shear
 • The behavior of footings in shear is similar to beams.
 • Only one-way shear or beam shear is significant in wall footing. Hence determining critical shear at critical section which is at a distance “d” from the face of support.

ACI Recommendations

• Design Considerations in Shear
 • Calculation of Critical shear at distance ‘d’

\[V_u = q_u b(k - d) \]

Where \(b \) is unit width equal to 1 foot

![Diagram of wall footing with labels k and d]
ACI Recommendations

- Design Considerations in Shear
 - Beam shear capacity (ΦV_c)
 \[\Phi V_c = \Phi 2 \sqrt{f'c} \cdot b \cdot d \]
 Where b is unit width equal to 1 foot

 If $\Phi V_c < V_u$, the depth of footing is increased instead of providing any shear reinforcement.

Design Procedure

- The design involves the following steps:
 - Step # 01: Estimate the thickness of footing, h
 Assume thickness h of the footing which must satisfy the shear requirements. (Min. thickness of footing on soil = 9 in.).
 - Step # 02: Calculate weight of fill + weight of concrete, W
 \[W = W_{\text{conc}} + W_{\text{fill}} \]
 - Step # 03: Calculate effective bearing capacity, q_e
 \[q_e = q_a - W \] (Allowable bearing capacity of soil)
 - Step # 04: Calculate bearing area, A_{req}
 \[A_{\text{req}} = \text{service load} / q_e \]
Design Procedure

• The design involves the following steps:

 • Step # 05: Calculate design pressure on base of footing due to factored loads, \(q_u \)
 \[
 q_u = \frac{\text{Factored load}}{\text{Bearing area}}
 \]

 • Step # 06: Calculate the critical shear, \(V_u \)
 \[
 V_u = q_u b (k - d)
 \]

 • Step # 07: Check the shear capacity, \(\Phi V_c \)
 \[
 \Phi V_c = \Phi 2 \sqrt{f'_c bd}
 \]
 \(\Phi V_c \) shall be equal to or greater than \(V_u \), if \(\Phi V_c < V_u \), increase thickness of footing.

 • Step # 08: Calculate maximum moment, \(M_u \)
 \[
 M_u = \frac{q_u (k + \frac{b}{2})^2}{2} \quad (\text{Masonry wall}) \\
 M_u = \frac{q_u k^2}{2} \quad (\text{Concrete wall})
 \]
 where; \(b = \text{wall thickness} \)

 • Step # 09: Calculate steel area, \(A_s \)
 \[
 A_s = M_u / \Phi f_y (d - a/2), \quad a = 0.2h
 \]
 By trial and success method, find \(A_s \)
Design Procedure

- The design involves the following steps:
 - **Step # 10: Minimum reinforcement and maximum spacing check**
 - $A_{smin} = 0.0020 \ bh$ For less than Grade 60
 - $A_{smin} = A_{dist} = 0.0018 \ bh$ For Grade 60
 - Maximum spacing = 3h or 18"
 - **Step # 11: Bars Spacing/Placement**
 - Main Bars: Spacing = $A_b \times 12 / A_s$
 - Distribution Bars: Spacing = $A_b \times 12 / A_s$

- **Step # 12: Drafting**

Example 9.1

- Design Example: Wall Footing
 - A 12-in thick concrete wall carries a service dead load of 10 kips/ft and a service live load of 12.5 kips/ft. The allowable soil pressure, q_a, is 5000 psf at the level of the base of the footing, which is 5 ft below the final ground surface. Design a wall footing using $f'_c = 3000$ psi and $f_y = 60,000$ psi. The density of soil is 120 lb/ft3.

Example 9.1

- Design Example: Wall Footing
Example 9.1

- Design Example: Wall Footing

- Step # 01: Estimate the thickness of footing, h
 - Assuming a trial thickness, $h = 12$ in.
 - Effective depth, $d = 12 - 3$ in. cover – $\frac{1}{2}$ (bar diameter) ≈ 8.5 in.

- Step # 02: Calculate weight of fill and weight of concrete, W
 - $W = W_{\text{conc}} + W_{\text{fill}} = 1 \times 0.15 + 4 \times 0.12 = 0.63 \text{ ksf}$

- Step # 03: Calculate effective bearing capacity, q_e
 - $q_e = q_a - W$
 - $q_e = 5 - 0.63 = 4.37 \text{ ksf}$
Example 9.1

Step # 04: Calculate bearing area, \(A_{req} \)
- \(A_{req} = \text{service load} / q_e \)
 - Service load = 10 + 12.5 = 22.5 kips/ft
 - \(A_{req} = 22.5 / 4.37 = 5.15 \text{ ft}^2 \) per foot of length
- Trying a footing 5 ft 2 in. wide

Step # 05: Calculate design pressure on base of footing due to factored loads, \(q_u \)
- \(q_u = \text{Factored load} / \text{Bearing area} \)
 - Factored loads = 1.2(10) + 1.6(12.5) = 32 kips
 - \(q_u = 32 / 5.17 = 6.19 \text{ ksf} \)

Step # 06: Calculate the critical shear, \(V_u \)
- Only one-way shear is significant in wall footing, hence determining critical shear at distance \(d \) from the face of support.
 - \(d = 12 - 3 \text{ in. cover} - \frac{1}{2} (\text{bar diameter}) = 8.5 \text{ in.} \)
 - \(V_u = q_u b (k - d) \)
 - \(V_u = 6.19 \times 1 \times \frac{(25 - 8.5)}{12} \)
 - \(V_u = 8.51 \text{ kips/ft} \)
Example 9.1

- **Step # 07: Check the shear capacity, ΦV_c**
 - **Check the Thickness for Shear**
 - Shear capacity, $\phi V_c = \phi 2 \sqrt{f'_c bd}$
 \[= \left(0.75 \times \sqrt{3000}\right) \times 12 \times 8.5 \right) / 1000 \]
 \[\phi V_c = 9.50 \text{ kips} \]
 - Since $V_u < \phi V_c$, the footing depth is OK. If V_u is larger or considerably smaller than ϕV_c then chose a new thickness and repeat the previous steps.
 - Using 12 in thick and 5 ft 2 in wide footing.

- **Step # 08: Calculate maximum moment, M_u**
 \[M_u = \frac{4uk^2}{2} = 6.19((25/12)^2 \times 1)/2 \]
 \[= 13.43 \text{ ft-kips/ft of length} \]

- **Step # 09: Calculate steel area, A_s**
 - Now, using trial and success method for determining A_s,
 \[A_s = M_u / \Phi f_y (d - a/2), \quad a = 0.2h \]
 - $A_s = 0.390 \text{ in}^2 / \text{per foot}$.
Example 9.1

Step # 10: Minimum reinforcement and maximum spacing check

- Min reinforcement
 \[A_{s,\text{min}} = 0.0018bh = 0.0018 \times 12 \times 12 = 0.26 \text{ in}^2/\text{ft} \]
 \[A_s > A_{s,\text{min}} \text{ O.K} \]
- Max spacing = 3h or 18\(\frac{\text{in}}{\text{c}} \) = 3(12) = 36\(\frac{\text{in}}{\text{c}} \) or 18\(\frac{\text{in}}{\text{c}} \) (OK)

Step # 11: Bars Spacing/Placement

- Main Bars: Spacing = \(A_b \times 12 / A_s \)
 - Using #5 bars, spacing = \(0.31 \times 12 / 0.390 = 9.53 \approx 9 \text{ in. c/c} \)
- Distribution Bars:
 \[A_{st} = 0.0018bh = 0.0018 \times 12 \times 12 = 0.26 \text{ in}^2 \]
 - Using #5 bars, spacing = \(0.31 \times 12 / 0.26 = 14.3 \text{ c/c} \)
 - We will use 5 #5 bars at equal spacing in the total footing width of 62 in. – 3 in. cover on one side – 3 in. cover on other side = 56\(\frac{\text{in}}{\text{c}} \)
Example 9.1

- Step # 12: Drafting

Example 9.2

- Design Example: Wall Footing
 - A 12-in thick concrete wall carries a service dead load of 15 kips/ft and a service live load of 10 kips/ft. The allowable soil pressure, q_a, is 5000 psf at the level of the base of the footing, which is 5 ft below the final ground surface. Design a wall footing using $f'_c = 3500$ psi and $f_y = 50,000$ psi. The density of soil is 120 lb/ft3.
2. Isolated Column Footing

General

- **Shape:**
 - Individual column footings are generally square in plan.
 - Rectangular shapes are sometimes used where dimensional limitations exists.
General

• Behavior:
 • The footing is a slab that directly supports a column.
 • Isolated footings display essentially two-dimensional action, cantilevering out on both orthogonal sides of the column.
 • The footing is loaded in an upward direction by the soil pressure.
 • Tensile stresses are induced in each direction in the bottom of the footing.

General

• Reinforcement:
 • A spread footing will typically have reinforcement in two orthogonal directions at the bottom of the footing for flexure.
General

- **Required Footing Area**
 - Bearing Area, \(A_{req} = (B \times L) = \text{Service Load/} q_e \)

- \(q_u \) (bearing pressure for strength design of footing):
 - \(q_u = \text{factored load on column/} A_{req} \)

ACI Recommendations

- **Design Considerations in Flexure**
 - The maximum factored moment is calculated at critical section.
 - For an isolated footing, critical section is located at the face of the column.
 - \(M_i = q_u B k^2/2 \), where \(k = (B - C)/2 \)
ACI Recommendations

- Design Considerations in Flexure
 - Minimum Reinforcement (A_{min}):
 - $A_{\text{min}} = 0.005B_d^{\text{avg}}$
 - Maximum Spacing Requirement (ACI 7.7.2.3):
 - Least of $3h$ or $18''$

ACI Recommendations

- Distribution of Reinforcement
 - *ACI* 13.3.3.2 states that in two-way square footings, reinforcement shall be distributed uniformly across entire width of footing.
ACI Recommendations

- **Design Considerations in Shear**
 - The footing thickness (depth) is generally established by the shear requirement.
 - The footing is subjected to two-way action. The two-way shear is commonly termed Punching shear, since the column or pedestal tends to punch through the footing, induces stresses around the perimeter of the column.
 - Beam shear is not usually a problem in a isolated footing.

ACI Recommendations

- **Design Considerations in Shear**
 - Two-Way Shear (Punching Shear)
 - The critical section for this two-way shear is taken at d/2 from the face of the column.
ACI Recommendations

• Design Considerations in Shear
 • Calculation of Critical shear at distance ‘d/2’

 \[V_{up} = q_u B^2 - q_u (c + d_{avg})^2 \]

 \[V_{up} = q_u \left(B^2 - (c + d_{avg})^2 \right) \]

ACI Recommendations

• Design Considerations in Shear
 • Punching shear capacity \((\Phi V_{cp})\)

 \[\Phi V_{cp} = \Phi 4 \sqrt{f'c b_o d_{avg}} \]

 Where \(b_o\) is Critical Shear Parameter, \(b_o = 4 x (c + d_{avg})\)
ACI Recommendations

- Design Considerations in Shear

\(\Phi V_{cp} \) should be equal to or greater than \(V_{up} \). If \(\Phi V_{cp} < V_{up} \), the depth of footing is increased instead of providing any shear reinforcement.

Design Procedure

- The design involves the following steps:
 - **Step # 01: Estimate the thickness of footing, \(h \)**

 Assume thickness \(h \) of the footing which must satisfy the shear requirements. (Min. thickness of footing on soil = 6 in.). Also find ‘d’.

 - **Step # 02: Calculate weight of fill + weight of concrete, \(W \)**

 \[W = W_{conc} + W_{fill} \]

 - **Step # 03: Calculate effective bearing capacity, \(q_e \)**

 \[q_e = q_a - W \quad (q_a = \text{Allowable bearing capacity of soil}) \]

 - **Step # 04: Calculate bearing area, \(A_{req} \)**

 \[A_{req} = \text{service load} / q_e \]
Design Procedure

- The design involves the following steps:
 - Step # 05: Calculate critical shear parameter, \(b_o \)

 Critical Perimeter, \(b_o = 4 \times (c + d_{avg}) \)

 - Step # 06: Calculate design pressure on base of footing due to factored loads, \(q_u \)

 \(q_u = \text{Factored load} / \text{Bearing area} \)

 - Step # 07: Calculate the punching shear force, \(V_{up} \)

 \[V_{up} = q_u \left(B^2 - (c + d_{avg})^2 \right) \]

 - Step # 08: Check the punching shear capacity, \(\Phi V_{cp} \)

 \[\Phi V_{cp} = \Phi 4 \sqrt{f'_c b_o d_{avg}} \quad \boxed{\Phi V_{cp} \geq V_{up}} \]

 \(\Phi V_{cp} \) shall be equal to or greater than \(V_{up} \), if \(\Phi V_{cp} < V_{up} \), increase thickness of footing

 - Step # 09: Calculate maximum moment, \(M_u \)

 \[M_u = q_u B k^2 \quad \text{where; } k = (B - C)/2 \]

 - Step # 10: Calculate steel area, \(A_s \)

 \[A_s = M_u / \Phi f_y \left(d - a/2 \right) \quad \text{By trial and success method, find } A_s \]

(Continued on next page...)

Design Procedure (continued)

- The design involves the following steps (continued):

 - Step # 08: Check the punching shear capacity, \(\Phi V_{cp} \)

 \[\Phi V_{cp} = \Phi 4 \sqrt{f'_c b_o d_{avg}} \quad \boxed{\Phi V_{cp} \geq V_{up}} \]

 \(\Phi V_{cp} \) shall be equal to or greater than \(V_{up} \), if \(\Phi V_{cp} < V_{up} \), increase thickness of footing

 - Step # 09: Calculate maximum moment, \(M_u \)

 \[M_u = q_u B k^2 \quad \text{where; } k = (B - C)/2 \]

 - Step # 10: Calculate steel area, \(A_s \)

 \[A_s = M_u / \Phi f_y \left(d - a/2 \right) \quad \text{By trial and success method, find } A_s \]
Design Procedure

- The design involves the following steps:
 - Step #11: Minimum reinforcement check, A_{smin}
 \[A_{smin} = 0.005B_{davg} \]
 - Step #12: Bars Placement
 - Step #13: Drafting

Example 9.3

- Design of a square column footing

A column 18" square with $f'_c = 3$ ksi reinforced with 8 #8 bars of $f_y = 40$ ksi, supports a service load of 81.87 kips (factored load = 103.17 kips). The allowable soil pressure is 2.204 k/ft². Design a square footing with base 5’ below surface. Take unit weight of soil as 100 psf.
Example 9.3

- **Data Given:**
 - Column size = 18" × 18"
 - $f'_c = 3$ ksi
 - $f_y = 40$ ksi
 - $q_a = 2.204$ k/ft²
 - Factored load on column = 103.17 kips (Reaction at the support)
 - Service load on column = 81.87 kips (Reaction at the support due to service load)

- **Step # 01: Estimate the thickness of footing, h**
 - Assume $h = 15$ in.
 - $d_{avg} = h – \text{clear cover} – \text{one bar dia} = 15 – 3 – 1(\text{for #8 bar}) = 11$ in.

- **Step # 02: Calculate overburden pressure, W**
 - Assume depth of the base of footing from ground level (z) = 5'
 - Weight of fill and concrete footing, $W = W_{\text{conc}} + W_{\text{fill}}$

 $W = \gamma_{\text{fill}}(z - h) + \gamma_c h = 100 \times (5 - 1.25) + 150 \times (1.25)$

 $W = 562.5$ psf = 0.5625 ksf
Example 9.3

- **Step # 03: Calculate effective bearing capacity, \(q_e \)**
 - Effective bearing capacity, \(q_e = q_a - W \)
 - \(q_e = 2.204 - 0.5625 = 1.642 \) ksf

- **Step # 04: Calculate bearing area, \(A_{req} \)**
 - Bearing area, \(A_{req} = \frac{\text{Service Load}}{q_e} \)
 - \(A_{req} = 81.87 / 1.642 = 49.86 \) ft²
 - \(A_{req} = B \times B = 49.86 \) ft²
 - \(B = 7 \) ft.

- **Step # 05: Calculate critical shear parameter, \(b_o \)**
 - Critical Perimeter, \(b_o = 4 \times (c + d_{avg}) \)
 - \(b_o = 4 \times (18 + 11) = 116 \) in

- **Step # 06: Calculate design pressure on base of footing due to factored loads, \(q_u \)**
 - \(q_u = \frac{\text{factored load on column}}{A_{req}} \)
 - \(q_u = 103.17 / (7 \times 7) = 2.105 \) ksf
Example 9.3

Step # 07: Calculate the punching shear force, V_{up}

- $V_{up} = q_u \left(B^2 - (c + d_{avg})^2 \right)$
- $V_{up} = q_u B^2 - q_u (c + d_{avg})^2$
- $V_{up} = 2.105 \left[7^2 - \left(\frac{18+11}{12} \right)^2 \right]$
 $= 90.85 \text{ kip}$

Step # 08: Check the punching shear capacity, ΦV_{cp}

- $V_{up} = 90.85 \text{ kip}$

Punching shear capacity (ΦV_{cp})

$\Phi V_{cp} = \Phi 4 \sqrt{f'c} b_d d_{avg}$

$\Phi V_{cp} = 0.75 \times 4 \times \sqrt{3000} \times 116 \times 11/1000$

$\Phi V_{cp} = 209.66 \text{ k} > V_{up}, \text{ O.K}$
Example 9.3

- **Step # 09: Calculate maximum moment, M_u**
 - \(M_u = q_u B k^2 / 2 \)
 - \(k = (B - C) / 2 = (7 \times 12 - 18) / 2 \)
 - \(= 33 \text{ in} = 2.75' \)
 - \(M_u = 2.105 \times 7 \times 2.75 \times 2.75 / 2 \)
 - \(= 55.72 \text{ ft-k} \)
 - \(= 668.60 \text{ in-kip} \)

- **Critical Section**

Example 9.3

- **Step # 10: Calculate steel area, A_s**
 - \(M_u = 668.60 \text{ kip-in} \)
 - \(a = 0.2 d_{avg} = 0.2 \times 11 = 2.2'' \)
 - \(A_s = M_u / (\Phi f_y (d_{avg} - a/2)) = 668.60 / (0.9 \times 40 \times (11 - 2.2/2)) \)
 - \(= 1.87 \text{ in}^2 \)
 - \(a = A_s f_y / (0.85 f'_c B) = 1.83 \times 40 / (0.85 \times 3 \times 7 \times 12) \)
 - \(= 0.35'' \)
 - After trials, \(A_s = 1.71 \text{ in}^2 \)
Example 9.3

Step # 11: Minimum reinforcement check, A_{smin}

$$A_{smin} = 0.005 B d_{avg} = 4.62 \text{ in}^2$$

$A_{smin} = 4.62 \text{ in}^2$ so A_{smin} governs.

Step # 12: Bars Placement

- Now, the spacing can be calculated as follows:
- Using #8 bars: No. of bars = $4.62 / 0.79$
 ≈ 6 bars.
- Spacing = $6.5 \times 12 / 5 = 15$ in. c/c
- Hence 6 bars can be provided in the foundation if they are placed 15 in. c/c (Max. spacing should not exceed 3h or 18 in.)
Example 9.3

- Step # 13: Drafting

Example 9.4

- Design of a square column footing

A column 18" square with $f'_c = 3$ksi reinforced with 8 #8 bars of $f_y = 60$ ksi, supports a dead load of 220 kips and live load of 175 kips. The allowable soil pressure is 5 k/ft². Design a square footing with base 5’ below surface. Take unit weight of soil equal to 100 psf.
Assignment # 04

- Submit Example # 9.4 of Lecture 09-Design of Column and Wall Footings in the next class.

References

- Design of Concrete Structures 14th/15th edition by Nilson, Darwin and Dolan.
- ACI 318-14